

2.4 Hooke's law

Task

Can forces deform solid bodies?

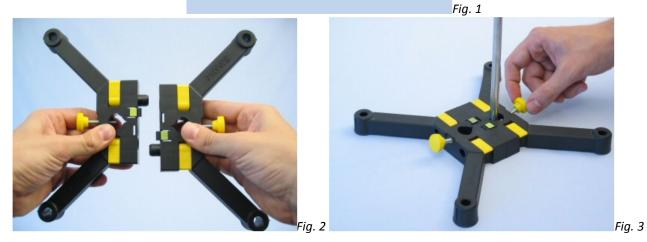
In this experiment the deformation which is caused by the weight of "mass pieces" on two helical springs is measured. The deformation is a characteristic feature of each spring, nevertheless one can observe that a fundamental law is ruling here. It is the goal of this experiment to verify this law - Hooke's Law.

Use	Use the space below for your own notes.						

Material

Material from "TESS advanced Physics Set Mechanics 1, ME-1" (Order No. 15271-88)

Position No.	Material	Order No.	Quantity
1	Support base, variable	02001-00	1
2	Support rod, split in 2 rods, / = 600 mm	02035-00	1
3	Bosshead	02043-00	1
4	Weight holder for slotted weights, 10 g	02204-00	1
5	Slotted weight, black coloured, 10 g	02205-01	4
5	Slotted weight, black coloured, 50 g	02206-01	3
6	Helical spring 3 N/m	02220-00	1
7	Helical spring, 20 N/m	02222-00	1
8	Holding pin	03949-00	1
9	Glass tube holder with tape measure clamp	05961-00	1
10	Measuring tape, I = 2 m	09936-00	1


Material required for the experiment

Setup

First screw the split support rods together (Fig. 1). Set up a stand with the support base and the support rod as you can see in Fig. 2 and Fig. 3.

Clamp the extended measuring tape in the glass tube holder (Fig. 4) and clamp both on the base of the support rod (Fig. 5).

Fia. 5

Fix the holding pin in the bosshead (Fig. 6) and hang the helical spring 1 in it (Fig. 7).

Fig. 7

Adjust the length of the measuring tape so that its zero mark is exactly at the same level as the lower end of the helical spring. See Fig. 8 and Fig. 9.

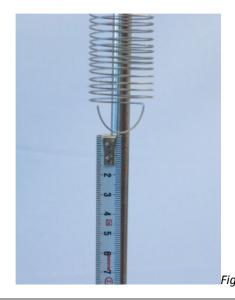


Fig. 9

- Hang the weight holder (m = 10 g) on the hooked end of the spring and record the extension Δl (Fig. 10).
- Increase the mass by 10 g increments to a total of 50 g and read the corresponding changes in length Δ/.
- Record all the values for the mass *m* and the extension *l* in Table 1 on the Results page.
- Calculate the weight (force) $F_g = m \times 0.00981$ N/g. You can see the values in as a graph.

Fig. 10

For fixing the slotted weight to the weight holder, you should slip the slotted weight over the top end of the weight holder (Fig. 11).

Fig. 11

- Exchange the helical spring 1 for the helical spring 2. Move the measuring tape up or down until its zero mark is even with the lower end of the spring.
- Hang the weight holder with a 10 g mass piece (sum = 20 g) on the spring's hook and note the extension Δl . Determine the corresponding extensions in length.
- Increase the mass in 20 g increments up to a total of 200 g and determine the corresponding extensions in length.
- Record theses values in Table 1 on the Results page and calculate the weight (force), too.

In order to disassemble the support base you should press the yellow button (Fig. 12).

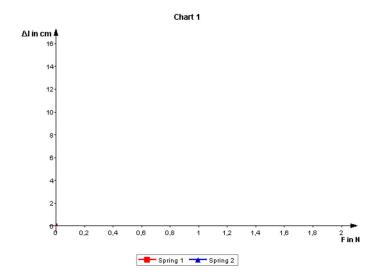


Fig. 12

Results

Table 1

Mass	Weight (force)	Deflection of Spring 1	Deflection of Spring 2
<i>m</i> in g	F _g in N	Δ/ in cm	Δ/ in cm
10			
20			
30			
40			
50			
60			
80			
100			
120			
140			
160			
180			
200			

The spring constant is characteristic for a given spring.

Evaluation

0	 _	sti	i	n	1	
	 μ,	•		п		- 3

What interrelationship can be seen in the plotted values (graphs)? What is the difference between the two helical springs?
Question 2: Which object is deformed by the slotted weights (mass pieces)?
Question 3: Do the values for the two springs lie in one straight line?
Question 4:
Is the extension ΔI of the two springs proportional to the weight (force) F_8 and thus to the mass m ?
Question 5: Determine the proportionality factor (k) from the two curves:
1. $k_1 = \Delta l_1 / F_{g1}$; $k_1 =$ m/N
2. $k_2 = \Delta l_2 / F_{g2}$; $k_2 =$ m/N
Additional Tasks The two helical springs differ in their proportionality factors k . Their reciprocal $1/k$ is called the spring constant D or deforming force: $D = 1/k = F/\Delta I$

Question 1: Calculate the spring constant. Which of the two springs has the larger spring constant?
Question 2: What is the effect of this larger spring constant?
Question 3: Do your measurements agree with the declared spring constants in the material list?
Question 4: Are the deviations larger than ±10 %?